SimulateFrocDataset.Rd
Simulates an uncorrelated MRMC FROC dataset for specified numbers of readers and treatments
SimulateFrocDataset(
mu,
lambda,
nu,
zeta1,
I,
J,
K1,
K2,
perCase,
seed = NULL,
deltaMu = 0
)
mu parameter of the RSM
RSM lambda parameter
RSM nu parameter
Lowest reporting threshold
Number of treatments, default is 1
Number of readers
Number of non-diseased cases
Number of diseased cases
A K2 length array containing the numbers of lesions per diseased case
Initial seed for random number generator, default
NULL
, for random seed.
Inter-modality increment in mu, default zero
An FROC dataset.
See book chapters on the Radiological Search Model (RSM) for details. In this code correlations between ratings on the same case are assumed to be zero.
Chakraborty DP (2017) Observer Performance Methods for Diagnostic Imaging - Foundations, Modeling, and Applications with R-Based Examples, CRC Press, Boca Raton, FL. https://www.routledge.com/Observer-Performance-Methods-for-Diagnostic-Imaging-Foundations-Modeling/Chakraborty/p/book/9781482214840
set.seed(1)
K1 <- 5;K2 <- 7;
maxLL <- 2;perCase <- floor(runif(K2, 1, maxLL + 1))
mu <- 1;lambda <- 1;nu <- 0.99 ;zeta1 <- -1
I <- 2; J <- 5
frocDataRaw <- SimulateFrocDataset(
mu = mu, lambda = lambda, nu = nu, zeta1 = zeta1,
I = I, J = J, K1 = K1, K2 = K2, perCase = perCase )
## plot the data
ret <- PlotEmpiricalOperatingCharacteristics(frocDataRaw, opChType = "FROC")
## print(ret$Plot)