This is referred to in the book as the "PEN" dataset. It consists of 112 cases, 64 of which are diseased, interpreted in five treatments (basically different image compression algorithms) by five radiologists using the FROC paradigm (the inferred ROC dataset is included; the original FROC data is lost).

dataset08

Format

A list with 3 elements: $ratings, $lesions and $descriptions; $ratings contain 3 elements, $NL, $LL and $LL_IL as sub-lists; $lesions contain 3 elements, $perCase, $IDs and $weights as sub-lists; $descriptions contain 7 elements, $fileName, $type, $name, $truthTableStr, $design, $modalityID and $readerID as sub-lists;

  • rating$NL num Array[1:5, 1:5, 1:112, 1] ratings of non-lesion localizations NLs

  • rating$LL num Array[1:5, 1:5, 1:64, 1] ratings of lesion localizations LLs

  • rating$LL_IL NA This placeholder is used only for LROC data

  • lesions$perCase int Array[1:64], number of lesions per diseased case

  • lesions$IDs num Array[1:64, 1], numeric labels of lesions on diseased cases

  • lesions$weights num Array[1:64, 1], weights (or clinical importance) of lesions

  • descriptions$fileName chr "dataset08", base name of dataset in `data` folder

  • descriptions$type chr "ROC" the data type

  • descriptions$name chr "PENEDO", the name of the dataset

  • descriptions$truthTableStr num Array[1:5, 1:5, 1:112, 1:2] truth table structure

  • descriptions$design chr "FCTRL", study design factorial dataset

  • descriptions$modalityID chr Array[1:5] "0" "1" "2" "3" ..., modality labels

  • descriptions$readerID chr Array[1:5] "0" "1" "2" "3" ..., reader labels

References

Penedo et al. Free-Response Receiver Operating Characteristic Evaluation of Lossy JPEG2000 and Object-based Set Partitioning in Hierarchical Trees Compression of Digitized Mammograms. Radiology. 2005;237(2):450-457.

Examples

res <- str(dataset08)
#> List of 3
#>  $ ratings     :List of 3
#>   ..$ NL   : num [1:5, 1:5, 1:112, 1] 3 2 3 2 3 0 0 4 0 2 ...
#>   ..$ LL   : num [1:5, 1:5, 1:64, 1] 3 2 4 3 3 3 3 4 4 3 ...
#>   ..$ LL_IL: logi NA
#>  $ lesions     :List of 3
#>   ..$ perCase: int [1:64] 1 1 1 1 1 1 1 1 1 1 ...
#>   ..$ IDs    : num [1:64, 1] 1 1 1 1 1 1 1 1 1 1 ...
#>   ..$ weights: num [1:64, 1] 1 1 1 1 1 1 1 1 1 1 ...
#>  $ descriptions:List of 7
#>   ..$ fileName     : chr "dataset08"
#>   ..$ type         : chr "ROC"
#>   ..$ name         : chr "PENEDO"
#>   ..$ truthTableStr: num [1:5, 1:5, 1:112, 1:2] 1 1 1 1 1 1 1 1 1 1 ...
#>   ..$ design       : chr "FCTRL"
#>   ..$ modalityID   : Named chr [1:5] "0" "1" "2" "3" ...
#>   .. ..- attr(*, "names")= chr [1:5] "0" "1" "2" "3" ...
#>   ..$ readerID     : Named chr [1:5] "1" "2" "3" "4" ...
#>   .. ..- attr(*, "names")= chr [1:5] "1" "2" "3" "4" ...
## PlotEmpOpChr(dataset = dataset08, opChType = "ROC")$Plot