SimulateLrocDataset.Rd
Simulates an uncorrelated LROC dataset for specified numbers of readers and treatments
SimulateLrocDataset(mu, lambda, nu, zeta1, I, J, K1, K2, lesionVector)
The mu parameter of the RSM
The RSM lambda parameter
The RSM nu parameter
The lowest reporting threshold
The number of treatments
The number of readers
The number of non-diseased cases
The number of diseased cases
A K2 length array containing the numbers of lesions per diseased case
An LROC dataset.
See book chapters on the Radiological Search Model (RSM) for details. The approach is to first simulate an FROC dataset and then convert it to an Lroc dataset. The correlations between FROC ratings on the same case are assumed to be zero.
Chakraborty DP (2017) Observer Performance Methods for Diagnostic Imaging - Foundations, Modeling, and Applications with R-Based Examples, CRC Press, Boca Raton, FL. https://www.routledge.com/Observer-Performance-Methods-for-Diagnostic-Imaging-Foundations-Modeling/Chakraborty/p/book/9781482214840
set.seed(1)
K1 <- 5; K2 <- 5; mu <- 2; lambda <- 1; lesionVector <- rep(1, 5); nu <- 0.8; zeta1 <- -3
frocData <- SimulateFrocDataset(mu, lambda, nu, zeta1, I = 2, J = 5, K1, K2, lesionVector)
lrocData <- DfFroc2Lroc(frocData)