Chapter 12 Analyzing a dataset with only diseased cases

12.1 TBA How much finished

0%

12.2 The problem

How to analyze \(K_1 = 0\) datasets.

ROC-like plot of TPF vs. FPF1 is possible, see Section 3.12.1. Can create a ROC-like dataset with equal number of “non-diseased” and diseased cases (the ratings of the non-diseased cases are the FP ratings on diseased cases). Fit RSM to this dataset. Proceed as before. Key assumption being violated: the FP ratings on diseased cases are independent of the TP ratings on same cases. However, without this assumption one cannot estimate RSM parameters. Need RJafroc function to handle this special case: FitRsmRoc1? No! Just need function to create a “ROC” dataset from one that only has diseased cases. e.g., DfNoNormalsDataset?

12.2.1 Step 1: Create a test (diseased cases only) dataset

Save TONY dataset to dsTony. Create copy dsNoNormals. Remove all normal cases from it.

dsTony <- RJafroc::dataset01 # TONY dataset
K2 <- length(dsTony$lesions$perCase)
K1 <- length(dsTony$ratings$NL[1,1,,1]) - K2
dsNoNormals <- dsTony
# Remove all normal cases
dsNoNormals$ratings$NL <- dsNoNormals$ratings$NL[,,-(1:K1),] 
# And fix truthTableStr
dsNoNormals$descriptions$truthTableStr <- 
  dsNoNormals$descriptions$truthTableStr[,,-(1:K1),]
RJafroc::UtilFigureOfMerit(dsTony,FOM = "wAFROC")
#>            rdr1      rdr2      rdr3      rdr4      rdr5
#> trtBT 0.7602704 0.8406191 0.8171524 0.8153090 0.8278324
#> trtDM 0.6425854 0.7049977 0.7518434 0.7724426 0.6836962
#RJafroc::UtilFigureOfMerit(dsNoNormals,FOM = "wAFROC") #this will generate an error
RJafroc::UtilFigureOfMerit(dsTony,FOM = "wAFROC1")
#>            rdr1      rdr2      rdr3      rdr4      rdr5
#> trtBT 0.8079866 0.8696629 0.8747798 0.8517613 0.8563468
#> trtDM 0.7277103 0.7781506 0.8225630 0.7968418 0.7496963
RJafroc::UtilFigureOfMerit(dsNoNormals,FOM = "wAFROC1")
#>            rdr1      rdr2      rdr3      rdr4      rdr5
#> trtBT 0.8594559 0.9009910 0.9369398 0.8910807 0.8871039
#> trtDM 0.8195304 0.8570572 0.8988448 0.8231600 0.8208875
st <- St(dsTony,FOM = "wAFROC")
st1 <- St(dsNoNormals,FOM = "wAFROC1")
st$RRRC
#> $FTests
#>                 DF          MS    FStat           p
#> Treatment  1.00000 0.025564954 10.29883 0.003668578
#> Error     24.70276 0.002482317       NA          NA
#> 
#> $ciDiffTrt
#>              Estimate     StdErr       DF        t       PrGTt    CILower
#> trtBT-trtDM 0.1011236 0.03151074 24.70276 3.209178 0.003668578 0.03618638
#>               CIUpper
#> trtBT-trtDM 0.1660608
#> 
#> $ciAvgRdrEachTrt
#>        Estimate     StdErr       DF   CILower   CIUpper         Cov2
#> trtBT 0.8122367 0.02698434 59.28149 0.7582465 0.8662268 0.0005390098
#> trtDM 0.7111131 0.03391021 17.78930 0.6398098 0.7824163 0.0006046324
st1$RRRC
#> $FTests
#>                 DF           MS    FStat           p
#> Treatment   1.0000 0.0065582806 7.957961 0.005193632
#> Error     236.8821 0.0008241157       NA          NA
#> 
#> $ciDiffTrt
#>               Estimate     StdErr       DF        t       PrGTt    CILower
#> trtBT-trtDM 0.05121828 0.01815616 236.8821 2.820986 0.005193632 0.01545011
#>                CIUpper
#> trtBT-trtDM 0.08698645
#> 
#> $ciAvgRdrEachTrt
#>        Estimate     StdErr       DF   CILower   CIUpper         Cov2
#> trtBT 0.8951143 0.01974550 24.73302 0.8544254 0.9358031 0.0002330913
#> trtDM 0.8438960 0.02497063 27.62144 0.7927144 0.8950776 0.0003862498
  • dsNoNormals is the dataset with no non-diseased cases.

  • st contains the results of significance testing using the wAFROC-AUC figure of merit for the full dataset.

  • st1 contains the results of significance testing using the wAFROC1-AUC figure of merit for the dataset with no non-diseased cases.