Chapter 5 DBM analysis text output
5.3 Analyzing the ROC dataset
This illustrates the St() function. The significance testing method is specified as "DBM" and the figure of merit FOM is specified as “Wilcoxon”. The embedded dataset dataset03 is used.
ret <- St(dataset03, FOM = "Wilcoxon", method = "DBM")5.4 Explanation of the output
The function returns a list with 5 members:
FOMs: figures of merit.ANOVA: ANOVA tables.RRRC: random-reader random-case analyses results.FRRC: fixed-reader random-case analyses results.RRFC” random-reader fixed-case analyses results.
Let us consider them individually.
str(ret$FOMs)
#> List of 3
#> $ foms : num [1:2, 1:4] 0.853 0.85 0.865 0.844 0.857 ...
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : chr [1:2] "trtTREAT1" "trtTREAT2"
#> .. ..$ : chr [1:4] "rdrREADER_1" "rdrREADER_2" "rdrREADER_3" "rdrREADER_4"
#> $ trtMeans :'data.frame': 2 obs. of 1 variable:
#> ..$ Estimate: num [1:2] 0.848 0.837
#> $ trtMeanDiffs:'data.frame': 1 obs. of 1 variable:
#> ..$ Estimate: num 0.0109FOMsis a list of 3fomsis a [2x4] dataframe: the figure of merit for each of of the four observers in the two treatments.trtMeansis a [2x1] dataframe: the average figure of merit over all readers for each treatment.trtMeanDiffsa [1x1] dataframe: the difference(s) of the reader-averaged figures of merit for all different-treatment pairings. In this example, with only two treatments, there is only one different-treatment pairing.
ret$FOMs$foms
#> rdrREADER_1 rdrREADER_2 rdrREADER_3 rdrREADER_4
#> trtTREAT1 0.8534600 0.8649932 0.8573044 0.8152420
#> trtTREAT2 0.8496156 0.8435097 0.8401176 0.8143374
ret$FOMs$trtMeans
#> Estimate
#> trtTREAT1 0.8477499
#> trtTREAT2 0.8368951
ret$FOMs$trtMeanDiffs
#> Estimate
#> trtTREAT1-trtTREAT2 0.01085482str(ret$ANOVA)
#> List of 4
#> $ TRCanova :'data.frame': 8 obs. of 3 variables:
#> ..$ SS: num [1:8] 0.0236 0.2052 52.5284 0.0151 6.41 ...
#> ..$ DF: num [1:8] 1 3 99 3 99 297 297 799
#> ..$ MS: num [1:8] 0.02357 0.06841 0.53059 0.00502 0.06475 ...
#> $ VarCom :'data.frame': 6 obs. of 1 variable:
#> ..$ Estimates: num [1:6] 3.78e-05 5.13e-02 -7.13e-04 -2.89e-03 2.79e-02 ...
#> $ IndividualTrt:'data.frame': 3 obs. of 3 variables:
#> ..$ DF : num [1:3] 3 99 297
#> ..$ trtTREAT1: num [1:3] 0.0493 0.294 0.105
#> ..$ trtTREAT2: num [1:3] 0.0242 0.3014 0.1034
#> $ IndividualRdr:'data.frame': 3 obs. of 5 variables:
#> ..$ DF : num [1:3] 1 99 99
#> ..$ rdrREADER_1: num [1:3] 0.000739 0.203875 0.091559
#> ..$ rdrREADER_2: num [1:3] 0.0231 0.2234 0.0803
#> ..$ rdrREADER_3: num [1:3] 0.0148 0.2142 0.0612
#> ..$ rdrREADER_4: num [1:3] 4.09e-05 2.85e-01 6.06e-02- ANOVA is a list of 4
TRCanovais a [8x3] dataframe: the treatment-reader-case ANOVA table, see below, where SS is the sum of squares, DF is the denominator degrees of freedom and MS is the mean squares, and T = treatment, R = reader, C = case, TR = treatment-reader, TC = treatment-case, RC = reader-case, TRC = treatment-reader-case.
VarComis a [6x1] dataframe: the variance components, see below, wherevarRis the reader variance,varCis the case variance,varTRis the treatment-reader variance,varTCis the treatment-case variance,varRCis the reader-case variance, andvarTRCis the treatment-reader-case variance.IndividualTrtis a [3x3] dataframe: the individual treatment variance components averaged over all readers, see below, wheremsRis the mean square reader,msCis the mean square case andmsRCis the mean square reader-case.IndividualRdris a [3x5] dataframe: the individual reader variance components averaged over treatments, see below, wheremsTis the mean square treatment,msCis the mean square case andmsTCis the mean square treatment-case.
ret$ANOVA$TRCanova
#> SS DF MS
#> T 0.02356541 1 0.023565410
#> R 0.20521800 3 0.068406000
#> C 52.52839868 99 0.530589886
#> TR 0.01506079 3 0.005020264
#> TC 6.41004881 99 0.064747968
#> RC 39.24295381 297 0.132131158
#> TRC 22.66007764 297 0.076296558
#> Total 121.08532315 799 NA
ret$ANOVA$VarCom
#> Estimates
#> VarR 3.775568e-05
#> VarC 5.125091e-02
#> VarTR -7.127629e-04
#> VarTC -2.887147e-03
#> VarRC 2.791730e-02
#> VarErr 7.629656e-02
ret$ANOVA$IndividualTrt
#> DF trtTREAT1 trtTREAT2
#> msR 3 0.04926635 0.02415991
#> msC 99 0.29396753 0.30137032
#> msRC 297 0.10504787 0.10337984
ret$ANOVA$IndividualRdr
#> DF rdrREADER_1 rdrREADER_2 rdrREADER_3 rdrREADER_4
#> msT 1 0.0007389761 0.02307702 0.01476929 4.091217e-05
#> msC 99 0.2038747746 0.22344191 0.21424677 2.854199e-01
#> msTC 99 0.0915587344 0.08027926 0.06122898 6.057067e-02str(ret$RRRC)
#> List of 3
#> $ FTests :'data.frame': 2 obs. of 4 variables:
#> ..$ DF : num [1:2] 1 3
#> ..$ MS : num [1:2] 0.02357 0.00502
#> ..$ FStat: num [1:2] 4.69 NA
#> ..$ p : num [1:2] 0.119 NA
#> $ ciDiffTrt :'data.frame': 1 obs. of 7 variables:
#> ..$ Estimate: num 0.0109
#> ..$ StdErr : num 0.00501
#> ..$ DF : num 3
#> ..$ t : num 2.17
#> ..$ PrGTt : num 0.119
#> ..$ CILower : num -0.00509
#> ..$ CIUpper : num 0.0268
#> $ ciAvgRdrEachTrt:'data.frame': 2 obs. of 5 variables:
#> ..$ Estimate: num [1:2] 0.848 0.837
#> ..$ StdErr : num [1:2] 0.0244 0.0236
#> ..$ DF : num [1:2] 70.1 253.6
#> ..$ CILower : num [1:2] 0.799 0.79
#> ..$ CIUpper : num [1:2] 0.896 0.883- RRRC, a list of 3 containing results of random-reader random-case analyses
FTtests: is a [2x4] dataframe: results of the F-tests, see below, whereFStatis the F-statistic andpis the p-value. The first row is the treatment effect and the second is the error term.ciDiffTrt: is a [1x7] dataframe: the confidence intervals between different-treatments, see below, whereStdErris the standard error of the estimate,tis the t-statistic andPrGTtis the p-value.ciAvgRdrEachTrt: is a [2x5] dataframe: the confidence intervals for each treatment, averaged over all readers in the treatment, see below, whereCILoweris the lower 95% confidence interval andCIUpperis the upper 95% confidence interval.
ret$RRRC$FTests
#> DF MS FStat p
#> Treatment 1 0.023565410 4.694058 0.1188379
#> Error 3 0.005020264 NA NA
ret$RRRC$ciDiffTrt
#> Estimate StdErr DF t PrGTt CILower
#> trtTREAT1-trtTREAT2 0.01085482 0.005010122 3 2.166577 0.1188379 -0.005089627
#> CIUpper
#> trtTREAT1-trtTREAT2 0.02679926
ret$RRRC$ciAvgRdrEachTrt
#> Estimate StdErr DF CILower CIUpper
#> trtTREAT1 0.8477499 0.02440215 70.12179 0.7990828 0.8964170
#> trtTREAT2 0.8368951 0.02356642 253.64403 0.7904843 0.8833058str(ret$FRRC)
#> NULL- FRRC, a list of 4 containing results of fixed-reader random-case analyses
FTtests: is a [2x4] dataframe: results of the F-tests, see below.ciDiffTrt: is a [1x7] dataframe: the confidence intervals between different-treatments, see below.ciAvgRdrEachTrt: is a [2x5] dataframe: the confidence intervals for the average reader over each treatmentciDiffTrtEachRdr: is a [4x7] dataframe: the confidence intervals for each different-treatment pairing for each reader.
ret$FRRC$FTests
#> NULL
ret$FRRC$ciDiffTrt
#> NULL
ret$FRRC$ciAvgRdrEachTrt
#> NULL
ret$FRRC$ciDiffTrtEachRdr
#> NULLstr(ret$RRFC)
#> NULL- RRFC, a list of 3 containing results of random-reader fixed-case analyses
FTtests: is a [2x4] dataframe: results of the F-tests, see below.ciDiffTrt: is a [1x7] dataframe: the confidence intervals between different-treatments, see below.ciAvgRdrEachTrt: is a [2x5] dataframe: the confidence intervals for the average reader over each over each treatment.
ret$RRFC$FTests
#> NULL
ret$RRFC$ciDiffTrt
#> NULL
ret$RRFC$ciAvgRdrEachTrt
#> NULL