Chapter 5 DBM analysis text output
5.1 TBA How much finished
50%
5.2 Introduction
This chapter illustrates significance testing using the DBM method.
5.3 Analyzing the ROC dataset
This illustrates the StSignificanceTesting() function. The significance testing method is specified as "DBM" and the figure of merit FOM is specified as “Wilcoxon”. The embedded dataset dataset03 is used.
5.4 Explanation of the output
The function returns a list with 5 members:
FOMs: figures of merit.ANOVA: ANOVA tables.RRRC: random-reader random-case analyses results.FRRC: fixed-reader random-case analyses results.RRFC" random-reader fixed-case analyses results.
Let us consider them individually.
str(ret$FOMs)
#> List of 3
#> $ foms :'data.frame': 2 obs. of 4 variables:
#> ..$ rdrREADER_1: num [1:2] 0.853 0.85
#> ..$ rdrREADER_2: num [1:2] 0.865 0.844
#> ..$ rdrREADER_3: num [1:2] 0.857 0.84
#> ..$ rdrREADER_4: num [1:2] 0.815 0.814
#> $ trtMeans :'data.frame': 2 obs. of 1 variable:
#> ..$ Estimate: num [1:2] 0.848 0.837
#> $ trtMeanDiffs:'data.frame': 1 obs. of 1 variable:
#> ..$ Estimate: num 0.0109FOMsis a list of 3fomsis a [2x4] dataframe: the figure of merit for each of of the four observers in the two treatments.trtMeansis a [2x1] dataframe: the average figure of merit over all readers for each treatment.trtMeanDiffsa [1x1] dataframe: the difference(s) of the reader-averaged figures of merit for all different-treatment pairings. In this example, with only two treatments, there is only one different-treatment pairing.
ret$FOMs$foms
#> rdrREADER_1 rdrREADER_2 rdrREADER_3 rdrREADER_4
#> trtTREAT1 0.85345997 0.86499322 0.85730439 0.81524197
#> trtTREAT2 0.84961556 0.84350972 0.84011759 0.81433740
ret$FOMs$trtMeans
#> Estimate
#> trtTREAT1 0.84774989
#> trtTREAT2 0.83689507
ret$FOMs$trtMeanDiffs
#> Estimate
#> trtTREAT1-trtTREAT2 0.010854817str(ret$ANOVA)
#> List of 4
#> $ TRCanova :'data.frame': 8 obs. of 3 variables:
#> ..$ SS: num [1:8] 0.0236 0.2052 52.5284 0.0151 6.41 ...
#> ..$ DF: num [1:8] 1 3 99 3 99 297 297 799
#> ..$ MS: num [1:8] 0.02357 0.06841 0.53059 0.00502 0.06475 ...
#> $ VarCom :'data.frame': 6 obs. of 1 variable:
#> ..$ Estimates: num [1:6] 3.78e-05 5.13e-02 -7.13e-04 -2.89e-03 2.79e-02 ...
#> $ IndividualTrt:'data.frame': 3 obs. of 3 variables:
#> ..$ DF : num [1:3] 3 99 297
#> ..$ TrtTREAT1: num [1:3] 0.0493 0.294 0.105
#> ..$ TrtTREAT2: num [1:3] 0.0242 0.3014 0.1034
#> $ IndividualRdr:'data.frame': 3 obs. of 5 variables:
#> ..$ DF : num [1:3] 1 99 99
#> ..$ rdrREADER_1: num [1:3] 0.000739 0.203875 0.091559
#> ..$ rdrREADER_2: num [1:3] 0.0231 0.2234 0.0803
#> ..$ rdrREADER_3: num [1:3] 0.0148 0.2142 0.0612
#> ..$ rdrREADER_4: num [1:3] 4.09e-05 2.85e-01 6.06e-02- ANOVA is a list of 4
TRCanovais a [8x3] dataframe: the treatment-reader-case ANOVA table, see below, where SS is the sum of squares, DF is the denominator degrees of freedom and MS is the mean squares, and T = treatment, R = reader, C = case, TR = treatment-reader, TC = treatment-case, RC = reader-case, TRC = treatment-reader-case.
VarComis a [6x1] dataframe: the variance components, see below, wherevarRis the reader variance,varCis the case variance,varTRis the treatment-reader variance,varTCis the treatment-case variance,varRCis the reader-case variance, andvarTRCis the treatment-reader-case variance.IndividualTrtis a [3x3] dataframe: the individual treatment variance components averaged over all readers, see below, wheremsRis the mean square reader,msCis the mean square case andmsRCis the mean square reader-case.IndividualRdris a [3x5] dataframe: the individual reader variance components averaged over treatments, see below, wheremsTis the mean square treatment,msCis the mean square case andmsTCis the mean square treatment-case.
ret$ANOVA$TRCanova
#> SS DF MS
#> T 0.023565410 1 0.0235654097
#> R 0.205217999 3 0.0684059998
#> C 52.528398680 99 0.5305898857
#> TR 0.015060792 3 0.0050202641
#> TC 6.410048814 99 0.0647479678
#> RC 39.242953812 297 0.1321311576
#> TRC 22.660077641 297 0.0762965577
#> Total 121.085323149 799 NA
ret$ANOVA$VarCom
#> Estimates
#> VarR 3.7755679e-05
#> VarC 5.1250915e-02
#> VarTR -7.1276294e-04
#> VarTC -2.8871475e-03
#> VarRC 2.7917300e-02
#> VarErr 7.6296558e-02
ret$ANOVA$IndividualTrt
#> DF TrtTREAT1 TrtTREAT2
#> msR 3 0.049266349 0.024159915
#> msC 99 0.293967531 0.301370323
#> msRC 297 0.105047872 0.103379843
ret$ANOVA$IndividualRdr
#> DF rdrREADER_1 rdrREADER_2 rdrREADER_3 rdrREADER_4
#> msT 1 0.00073897606 0.023077021 0.014769293 0.00004091217
#> msC 99 0.20387477465 0.223441908 0.214246773 0.28541990211
#> msTC 99 0.09155873437 0.080279256 0.061228980 0.06057067104str(ret$RRRC)
#> List of 3
#> $ FTests :'data.frame': 2 obs. of 4 variables:
#> ..$ DF : num [1:2] 1 3
#> ..$ MS : num [1:2] 0.02357 0.00502
#> ..$ FStat: num [1:2] 4.69 NA
#> ..$ p : num [1:2] 0.119 NA
#> $ ciDiffTrt :'data.frame': 1 obs. of 7 variables:
#> ..$ Estimate: num 0.0109
#> ..$ StdErr : num 0.00501
#> ..$ DF : num 3
#> ..$ t : num 2.17
#> ..$ PrGTt : num 0.119
#> ..$ CILower : num -0.00509
#> ..$ CIUpper : num 0.0268
#> $ ciAvgRdrEachTrt:'data.frame': 2 obs. of 5 variables:
#> ..$ Estimate: num [1:2] 0.848 0.837
#> ..$ StdErr : num [1:2] 0.0244 0.0236
#> ..$ DF : num [1:2] 70.1 253.6
#> ..$ CILower : num [1:2] 0.799 0.79
#> ..$ CIUpper : num [1:2] 0.896 0.883- RRRC, a list of 3 containing results of random-reader random-case analyses
FTtests: is a [2x4] dataframe: results of the F-tests, see below, whereFStatis the F-statistic andpis the p-value. The first row is the treatment effect and the second is the error term.ciDiffTrt: is a [1x7] dataframe: the confidence intervals between different-treatments, see below, whereStdErris the standard error of the estimate,tis the t-statistic andPrGTtis the p-value.ciAvgRdrEachTrt: is a [2x5] dataframe: the confidence intervals for each treatment, averaged over all readers in the treatment, see below, whereCILoweris the lower 95% confidence interval andCIUpperis the upper 95% confidence interval.
ret$RRRC$FTests
#> DF MS FStat p
#> Treatment 1 0.0235654097 4.6940577 0.11883786
#> Error 3 0.0050202641 NA NA
ret$RRRC$ciDiffTrt
#> Estimate StdErr DF t PrGTt
#> trtTREAT1-trtTREAT2 0.010854817 0.0050101218 3 2.1665774 0.11883786
#> CILower CIUpper
#> trtTREAT1-trtTREAT2 -0.0050896269 0.026799261
ret$RRRC$ciAvgRdrEachTrt
#> Estimate StdErr DF CILower CIUpper
#> trtTREAT1 0.84774989 0.024402152 70.121788 0.79908282 0.89641696
#> trtTREAT2 0.83689507 0.023566416 253.644028 0.79048429 0.88330585str(ret$FRRC)
#> List of 4
#> $ FTests :'data.frame': 2 obs. of 4 variables:
#> ..$ DF : num [1:2] 1 99
#> ..$ MS : num [1:2] 0.0236 0.0647
#> ..$ FStat: num [1:2] 0.364 NA
#> ..$ p : num [1:2] 0.548 NA
#> $ ciDiffTrt :'data.frame': 1 obs. of 7 variables:
#> ..$ Estimate: num 0.0109
#> ..$ StdErr : num 0.018
#> ..$ DF : num 99
#> ..$ t : num 0.603
#> ..$ PrGTt : num 0.548
#> ..$ CILower : num -0.0248
#> ..$ CIUpper : num 0.0466
#> $ ciAvgRdrEachTrt :'data.frame': 2 obs. of 5 variables:
#> ..$ Estimate: num [1:2] 0.848 0.837
#> ..$ StdErr : num [1:2] 0.0271 0.0274
#> ..$ DF : num [1:2] 99 99
#> ..$ CILower : num [1:2] 0.794 0.782
#> ..$ CIUpper : num [1:2] 0.902 0.891
#> $ ciDiffTrtEachRdr:'data.frame': 4 obs. of 7 variables:
#> ..$ Estimate: num [1:4] 0.003844 0.021483 0.017187 0.000905
#> ..$ StdErr : num [1:4] 0.0428 0.0401 0.035 0.0348
#> ..$ DF : num [1:4] 99 99 99 99
#> ..$ t : num [1:4] 0.0898 0.5362 0.4911 0.026
#> ..$ PrGTt : num [1:4] 0.929 0.593 0.624 0.979
#> ..$ CILower : num [1:4] -0.0811 -0.058 -0.0522 -0.0682
#> ..$ CIUpper : num [1:4] 0.0888 0.101 0.0866 0.07- FRRC, a list of 4 containing results of fixed-reader random-case analyses
FTtests: is a [2x4] dataframe: results of the F-tests, see below.ciDiffTrt: is a [1x7] dataframe: the confidence intervals between different-treatments, see below.ciAvgRdrEachTrt: is a [2x5] dataframe: the confidence intervals for the average reader over each treatmentciDiffTrtEachRdr: is a [4x7] dataframe: the confidence intervals for each different-treatment pairing for each reader.
ret$FRRC$FTests
#> DF MS FStat p
#> Treatment 1 0.023565410 0.36395597 0.54769704
#> Error 99 0.064747968 NA NA
ret$FRRC$ciDiffTrt
#> Estimate StdErr DF t PrGTt
#> trtTREAT1-trtTREAT2 0.010854817 0.017992772 99 0.60328764 0.54769704
#> CILower CIUpper
#> trtTREAT1-trtTREAT2 -0.024846746 0.04655638
ret$FRRC$ciAvgRdrEachTrt
#> Estimate StdErr DF CILower CIUpper
#> trtTREAT1 0.84774989 0.027109386 99 0.79395898 0.90154079
#> trtTREAT2 0.83689507 0.027448603 99 0.78243109 0.89135905
ret$FRRC$ciDiffTrtEachRdr
#> Estimate StdErr DF t
#> rdrREADER_1::trtTREAT1-trtTREAT2 0.00384441429 0.042792227 99 0.089839080
#> rdrREADER_2::trtTREAT1-trtTREAT2 0.02148349163 0.040069753 99 0.536152334
#> rdrREADER_3::trtTREAT1-trtTREAT2 0.01718679331 0.034993994 99 0.491135520
#> rdrREADER_4::trtTREAT1-trtTREAT2 0.00090456807 0.034805365 99 0.025989329
#> PrGTt CILower CIUpper
#> rdrREADER_1::trtTREAT1-trtTREAT2 0.92859660 -0.081064648 0.088753476
#> rdrREADER_2::trtTREAT1-trtTREAT2 0.59305592 -0.058023592 0.100990575
#> rdrREADER_3::trtTREAT1-trtTREAT2 0.62441761 -0.052248882 0.086622469
#> rdrREADER_4::trtTREAT1-trtTREAT2 0.97931817 -0.068156827 0.069965963str(ret$RRFC)
#> List of 3
#> $ FTests :'data.frame': 2 obs. of 4 variables:
#> ..$ DF : num [1:2] 1 3
#> ..$ MS : num [1:2] 0.02357 0.00502
#> ..$ FStat: num [1:2] 4.69 NA
#> ..$ p : num [1:2] 0.119 NA
#> $ ciDiffTrt :'data.frame': 1 obs. of 7 variables:
#> ..$ Estimate: num 0.0109
#> ..$ StdErr : num 0.00501
#> ..$ DF : num 3
#> ..$ t : num 2.17
#> ..$ PrGTt : num 0.119
#> ..$ CILower : num -0.00509
#> ..$ CIUpper : num 0.0268
#> $ ciAvgRdrEachTrt:'data.frame': 2 obs. of 5 variables:
#> ..$ Estimate: num [1:2] 0.848 0.837
#> ..$ StdErr : num [1:2] 0.0111 0.00777
#> ..$ DF : num [1:2] 3 3
#> ..$ CILower : num [1:2] 0.812 0.812
#> ..$ CIUpper : num [1:2] 0.883 0.862- RRFC, a list of 3 containing results of random-reader fixed-case analyses
FTtests: is a [2x4] dataframe: results of the F-tests, see below.ciDiffTrt: is a [1x7] dataframe: the confidence intervals between different-treatments, see below.ciAvgRdrEachTrt: is a [2x5] dataframe: the confidence intervals for the average reader over each over each treatment.
ret$RRFC$FTests
#> DF MS FStat p
#> Treatment 1 0.0235654097 4.6940577 0.11883786
#> Error 3 0.0050202641 NA NA
ret$RRFC$ciDiffTrt
#> Estimate StdErr DF t PrGTt
#> trtTREAT1-trtTREAT2 0.010854817 0.0050101218 3 2.1665774 0.11883786
#> CILower CIUpper
#> trtTREAT1-trtTREAT2 -0.0050896269 0.026799261
ret$RRFC$ciAvgRdrEachTrt
#> Estimate StdErr DF CILower CIUpper
#> trtTREAT1 0.84774989 0.011098012 3 0.81243106 0.88306871
#> trtTREAT2 0.83689507 0.007771730 3 0.81216196 0.86162818